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P R E F a C E

B A C K G R O U N D
Fluid mechanics is an exciting and fascinating subject with unlimited practi-
cal applications ranging from microscopic biological systems to automobiles, 
airplanes, and spacecraft propulsion. Fluid mechanics has also historically 
been one of the most challenging subjects for undergraduate students because 
proper analysis of fluid mechanics problems requires not only knowledge 
of the concepts but also physical intuition and experience. Our hope is that 
this book, through its careful explanations of concepts and its use of numer-
ous practical examples, sketches, figures, and photographs, bridges the gap 
between knowledge and the proper application of that knowledge.
	 Fluid mechanics is a mature subject; the basic equations and approxima-
tions are well established and can be found in any introductory textbook. Our 
book is distinguished from other introductory books because we present the 
subject in a progressive order from simple to more difficult, building each 
chapter upon foundations laid down in earlier chapters. We provide more dia-
grams and photographs than other books because fluid mechanics is, by its 
nature, a highly visual subject. Only by illustrating the concepts discussed, 
can students fully appreciate the mathematical significance of the material. 

O B J E C T I V E S
This book has been written for the first fluid mechanics course for under-
graduate engineering students. There is sufficient material for a two-course 
sequence, if desired. We assume that readers will have an adequate back-
ground in calculus, physics, engineering mechanics, and thermodynamics. 
The objectives of this text are

⬤⬤ To present the basic principles and equations of fluid mechanics.
⬤⬤ To show numerous and diverse real-world engineering examples to 

give the student the intuition necessary for correct application of fluid 
mechanics principles in engineering applications.

⬤⬤ To develop an intuitive understanding of fluid mechanics by emphasiz-
ing the physics, and reinforcing that understanding through illustrative 
figures and photographs.

The book contains enough material to allow considerable flexibility in teach-
ing the course. Aeronautics and aerospace engineers might emphasize poten-
tial flow, drag and lift, compressible flow, turbomachinery, and CFD, while 
mechanical or civil engineering instructors might choose to emphasize pipe 
flows and open-channel flows, respectively. 

N E W  T O  T H E  F O U R T H  E D I T I O N
All the popular features of the previous editions have been retained while new 
ones have been added. The main body of the text remains largely unchanged. 
A noticeable change is the addition of a number of exciting new pictures 
throughout the book.
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	   Four new subsections have been added: “Uniform versus Nonuniform 
Flow” and “Equation Solvers” to Chap. 1, “Flying in Nature” by guest author 
Azar Eslam Panah of Penn State Berks to Chap. 11, and “CFD Methods for 
Two-Phase Flows” by guest author Alex Rattner of Penn State to Chap. 15. In 
Chap. 8, we now highlight the explicit Churchill equation as an alternative to 
the implicit Colebrook equation. 
	 Two new Application Spotlights, have been added: “Smelling Food; the 
Human Airway” by Rui Ni of Penn State, to Chap. 4, and “Multicolor Par-
ticle Shadow Velocimetry/Accelerometry” by Michael McPhail and Michael 
Krane of Penn State to Chap. 8. 
	 A large number of the end-of-chapter problems in the text have been mod-
ified and many problems were replaced by new ones. Also, several of the 
solved example problems have been replaced.

P H I L O S O P H Y  A N D  G O A L
The Fourth Edition of Fluid Mechanics: Fundamentals and Applications has 
the same goals and philosophy as the other texts by lead author Yunus Çengel.

⬤⬤ Communicates directly with tomorrow’s engineers in a simple yet  
precise manner

⬤⬤ Leads students toward a clear understanding and firm grasp of the basic 
principles of fluid mechanics

⬤⬤ Encourages creative thinking and development of a deeper understand-
ing and intuitive feel for fluid mechanics

⬤⬤ Is read by students with interest and enthusiasm rather than merely as a 
guide to solve homework problems

The best way to learn is by practice. Special effort is made throughout the 
book to reinforce the material that was presented earlier (in each chapter 
as well as in material from previous chapters). Many of the illustrated 
example problems and end-of-chapter problems are comprehensive and 
encourage students to review and revisit concepts and intuitions gained 
previously.
	 Throughout the book, we show examples generated by computational fluid 
dynamics (CFD). We also provide an introductory chapter on the subject. Our 
goal is not to teach the details about numerical algorithms associated with 
CFD—this is more properly presented in a separate course. Rather, our intent 
is to introduce undergraduate students to the capabilities and limitations of 
CFD as an engineering tool. We use CFD solutions in much the same way  
as experimental results are used from wind tunnel tests (i.e., to reinforce 
understanding of the physics of fluid flows and to provide quality flow visual-
izations that help explain fluid behavior). With dozens of CFD end-of-chapter 
problems posted on the website, instructors have ample opportunity to intro-
duce the basics of CFD throughout the course.

C O N T E N T  A N D  O R G A N I Z A T I O N
This book is organized into 15 chapters beginning with fundamental concepts 
of fluids, fluid properties, and fluid flows and ending with an introduction to 
computational fluid dynamics.

⬤⬤ Chapter 1 provides a basic introduction to fluids, classifications of fluid 
flow, control volume versus system formulations, dimensions, units, 
significant digits, and problem-solving techniques.
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⬤⬤ Chapter 2 is devoted to fluid properties such as density, vapor pressure, 
specific heats, speed of sound, viscosity, and surface tension.

⬤⬤ Chapter 3 deals with fluid statics and pressure, including manometers 
and barometers, hydrostatic forces on submerged surfaces, buoyancy 
and stability, and fluids in rigid-body motion.

⬤⬤ Chapter 4 covers topics related to fluid kinematics, such as the differ-
ences between Lagrangian and Eulerian descriptions of fluid flows, 
flow patterns, flow visualization, vorticity and rotationality, and the 
Reynolds transport theorem.

⬤⬤ Chapter 5 introduces the fundamental conservation laws of mass, 
momentum, and energy, with emphasis on the proper use of the mass, 
Bernoulli, and energy equations and the engineering applications of 
these equations.

⬤⬤ Chapter 6 applies the Reynolds transport theorem to linear momentum 
and angular momentum and emphasizes practical engineering applica-
tions of finite control volume momentum analysis.

⬤⬤ Chapter 7 reinforces the concept of dimensional homogeneity and intro-
duces the Buckingham Pi theorem of dimensional analysis, dynamic 
similarity, and the method of repeating variables—material that is use-
ful throughout the rest of the book and in many disciplines in science 
and engineering.

⬤⬤ Chapter 8 is devoted to flow in pipes and ducts. We discuss the dif-
ferences between laminar and turbulent flow, friction losses in pipes 
and ducts, and minor losses in piping networks. We also explain how 
to properly select a pump or fan to match a piping network. Finally, we 
discuss various experimental devices that are used to measure flow rate 
and velocity, and provide a brief introduction to biofluid mechanics.

⬤⬤ Chapter 9 deals with differential analysis of fluid flow and includes der-
ivation and application of the continuity equation, the Cauchy equation, 
and the Navier–Stokes equation. We also introduce the stream function 
and describe its usefulness in analysis of fluid flows, and we provide a 
brief introduction to biofluids. Finally, we point out some of the unique 
aspects of differential analysis related to biofluid mechanics.

⬤⬤ Chapter 10 discusses several approximations of the Navier–Stokes equa-
tion and provides example solutions for each approximation, including 
creeping flow, inviscid flow, irrotational (potential) flow, and boundary 
layers.

⬤⬤ Chapter 11 covers forces on living and non-living bodies (drag and 
lift), explaining the distinction between friction and pressure drag, 
and providing drag coefficients for many common geometries. This 
chapter emphasizes the practical application of wind tunnel mea-
surements coupled with dynamic similarity and dimensional analysis 
concepts introduced earlier in Chap. 7.

⬤⬤ Chapter 12 extends fluid flow analysis to compressible flow, where the 
behavior of gases is greatly affected by the Mach number. In this chapter, 
the concepts of expansion waves, normal and oblique shock waves, and 
choked flow are introduced.

⬤⬤ Chapter 13 deals with open-channel flow and some of the unique fea-
tures associated with the flow of liquids with a free surface, such as 
surface waves and hydraulic jumps.

cen96534_fm_i_xxvi.indd   17 01/12/16   10:56 am



xviii
FLUID MECHANICS

⬤⬤ Chapter 14 examines turbomachinery in more detail, including pumps, 
fans, and turbines. An emphasis is placed on how pumps and turbines 
work, rather than on their detailed design. We also discuss overall pump 
and turbine design, based on dynamic similarity laws and simplified 
velocity vector analyses. 

⬤⬤ Chapter 15 describes the fundamental concepts of computational fluid 
dyamics (CFD) and shows students how to use commercial CFD codes 
as tools to solve complex fluid mechanics problems. We emphasize the 
application of CFD rather than the algorithms used in CFD codes.

	 Each chapter contains a wealth of end-of-chapter homework problems. 
Most of the problems that require calculation use the SI system of units; how-
ever, about 20 percent use English units. A comprehensive set of appendices 
is provided, giving the thermodynamic and fluid properties of several mate-
rials, in addition to air and water, along with some useful plots and tables. 
Many of the end-of-chapter problems require the use of material properties 
from the appendices to enhance the realism of the problems.

L E A R N I N G  T O O L S
EMPHASIS ON PHYSICS
A distinctive feature of this book is its emphasis on the physical aspects 
of the subject matter in addition to mathematical representations and 
manipulations. The authors believe that the emphasis in undergraduate 
education should remain on developing a sense of underlying physical 
mechanisms and a mastery of solving practical problems that an engineer 
is likely to face in the real world. Developing an intuitive understanding 
should also make the course a more motivating and worthwhile experi-
ence for the students.

EFFECTIVE USE OF ASSOCIATION
An observant mind should have no difficulty understanding engineering  
sciences. After all, the principles of engineering sciences are based on our 
everyday experiences and experimental observations. Therefore, a physi-
cal, intuitive approach is used throughout this text. Frequently, parallels are 
drawn between the subject matter and students’ everyday experiences so that 
they can relate the subject matter to what they already know.

SELF-INSTRUCTING
The material in the text is introduced at a level that an average student can 
follow comfortably. It speaks to students, not over students. In fact, it is self-
instructive. Noting that the principles of science are based on experimental 
observations, most of the derivations in this text are largely based on physical 
arguments, and thus they are easy to follow and understand.

EXTENSIVE USE OF ARTWORK AND PHOTOGRAPHS
Figures are important learning tools that help the students “get the picture,” 
and the text makes effective use of graphics. It contains more figures, photo-
graphs, and illustrations than any other book in this category. Figures attract 
attention and stimulate curiosity and interest. Most of the figures in this text 
are intended to serve as a means of emphasizing some key concepts that 
would otherwise go unnoticed; some serve as page summaries.
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CONSISTENT COLOR SCHEME FOR FIGURES
The figures have a consistent color scheme applied for all arrows.

⬤⬤ Blue: ( ) motion related, like velocity vectors
⬤⬤ Green: ( ) force and pressure related, and torque
⬤⬤ Black: ( ) distance related arrows and dimensions
⬤⬤ Red: ( ) energy related, like heat and work
⬤⬤ Purple: ( ) acceleration and gravity vectors, vorticity, and  

miscellaneous

NUMEROUS WORKED-OUT EXAMPLES 
All chapters contain numerous worked-out examples that both clarify the 
material and illustrate the use of basic principles in a context that helps 
develop the student’s intuition. An intuitive and systematic approach is used 
in the solution of all example problems. The solution methodology starts with 
a statement of the problem, and all objectives are identified. The assumptions 
and approximations are then stated together with their justifications. Any 
properties needed to solve the problem are listed separately. Numerical values 
are used together with numbers to emphasize that without units, numbers are 
meaningless. The significance of each example’s result is discussed following 
the solution. This methodical approach is also followed and provided in the 
solutions to the end-of-chapter problems, available to instructors.

A WEALTH OF REALISTIC END-OF-CHAPTER PROBLEMS
The end-of-chapter problems are grouped under specific topics to make 
problem selection easier for both instructors and students. Within each 
group of problems are Concept Questions, indicated by “C,” to check the 
students’ level of understanding of basic concepts. Problems under Funda-
mentals of Engineering (FE) Exam Problems are designed to help students  
prepare for the Fundamentals of Engineering exam, as they prepare  
for their Professional Engineering license. The problems under Review 
Problems are more comprehensive in nature and are not directly tied 
to any specific section of a chapter—in some cases they require review 
of material learned in previous chapters. Problems designated as  
Design and Essay are intended to encourage students to make engineering 
judgments, to conduct independent exploration of topics of interest, and to 
communicate their findings in a professional manner. Problems designated 
by an “E” are in English units, and SI users can ignore them. Problems with 
the    icon are comprehensive in nature and are intended to be solved with a 
computer, using appropriate software. Several economics- and safety-related 
problems are incorporated throughout to enhance cost and safety awareness 
among engineering students. Answers to selected problems are listed imme-
diately following the problem for convenience to students.

USE OF COMMON NOTATION
The use of different notation for the same quantities in different engineering 
courses has long been a source of discontent and confusion. A student taking 
both fluid mechanics and heat transfer, for example, has to use the notation Q 
for volume flow rate in one course, and for heat transfer in the other. The need 
to unify notation in engineering education has often been raised, even in some 
reports of conferences sponsored by the National Science Foundation through 
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Foundation Coalitions, but little effort has been made to date in this regard. 
For example, refer to the final report of the Mini-Conference on Energy Stem 
Innovations, May 28 and 29, 2003, University of Wisconsin. In this text we 
made a conscious effort to minimize this conflict by adopting the familiar 
thermodynamic notation V̇ for volume flow rate, thus reserving the notation Q 
for heat transfer. Also, we consistently use an overdot to denote time rate. We 
think that both students and instructors will appreciate this effort to promote 
a common notation.

A CHOICE OF SI ALONE OR SI/ENGLISH UNITS
In recognition of the fact that English units are still widely used in some 
industries, both SI and English units are used in this text, with an emphasis on 
SI. The material in this text can be covered using combined SI/English units 
or SI units alone, depending on the preference of the instructor. The property 
tables and charts in the appendices are presented in both units, except the ones 
that involve dimensionless quantities. Problems, tables, and charts in English 
units are designated by “E” after the number for easy recognition, and they 
can be ignored easily by the SI users.

COMBINED COVERAGE OF BERNOULLI  
AND ENERGY EQUATIONS
The Bernoulli equation is one of the most frequently used equations in fluid 
mechanics, but it is also one of the most misused. Therefore, it is important 
to emphasize the limitations on the use of this idealized equation and to  
show how to properly account for imperfections and irreversible losses. 
In Chap. 5, we do this by introducing the energy equation right after the 
Bernoulli equation and demonstrating how the solutions of many practical 
engineering problems differ from those obtained using the Bernoulli equa-
tion. This helps students develop a realistic view of the Bernoulli equation.

A SEPARATE CHAPTER ON CFD
Commercial Computational Fluid Dynamics (CFD) codes are widely used 
in engineering practice in the design and analysis of flow systems, and it has 
become exceedingly important for engineers to have a solid understanding of 
the fundamental aspects, capabilities, and limitations of CFD. Recognizing 
that most undergraduate engineering curriculums do not have room for a full 
course on CFD, a separate chapter is included here to make up for this defi-
ciency and to equip students with an adequate background on the strengths 
and weaknesses of CFD.

APPLICATION SPOTLIGHTS
Throughout the book are highlighted examples called Application Spotlights 
where a real-world application of fluid mechanics is shown. A unique fea-
ture of these special examples is that they are written by guest authors. The 
Application Spotlights are designed to show students how fluid mechanics 
has diverse applications in a wide variety of fields. They also include eye-
catching photographs from the guest authors’ research.
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GLOSSARY OF FLUID MECHANICS TERMS
Throughout the chapters, when an important key term or concept is introduced 
and defined, it appears in black boldface type. Fundamental fluid mechanics 
terms and concepts appear in red boldface type, and these fundamental terms 
also appear in a comprehensive end-of-book glossary developed by Professor 
Emeritus James Brasseur of The Pennsylvania State University. This unique 
glossary is an excellent learning and review tool for students as they move 
forward in their study of fluid mechanics. 

CONVERSION FACTORS
Frequently used conversion factors, physical constants, and properties of air 
and water at 20°C and atmospheric pressure are listed at the very end of the 
book for easy reference.

NOMENCLATURE
A list of the major symbols, subscripts, and superscripts used in the text is 
provided near the end of the book for easy reference.
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Online Resources available at www.mhhe.com/cengel
Your home page for teaching fluid mechanics, the Fluid Mechanics:  
Fundamentals and Applications text-specific website is password protected 
and offers resources for instructors. 

■■ Electronic Solutions Manual—provides PDF files with detailed typed 
solutions to all text homework problems.

■■ Lecture Slides—provide PowerPoint lecture slides for all chapters.
■■ Fluid Mechanics Videos—provide visual illustrations and demonstrations 

of fluid mechanics concepts for deeper student comprehension.
■■ Image Library—provides electronic files for text figures for easy integration 

into your course presentations, exams, and assignments.
■■ Sample Syllabi—make it easier for you to map out your course using this 

text for different course durations (one quarter, one semester, etc.) and for 
different disciplines (ME approach, Civil approach, etc.).

■■ Transition Guides—compare coverage to other popular introductory  
fluid mechanics books at the section level to aid transition to teaching  
from our text.

■■ CFD homework problems and solutions designed for use with various CFD 
packages.

■■ COSMOS—allows instructors to create custom homework, quizzes, and tests 
using end-of-chapter problems and correlating solutions.
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1
     CHAPTER

1

I N T R O D U C T I O N  A N D 
B A S I C  C O N C E P T S

In this introductory chapter, we present the basic concepts commonly 
used in the analysis of fluid flow. We start this chapter with a discussion 
of the phases of matter and the numerous ways of classification of fluid 

flow, such as viscous versus inviscid regions of flow, internal versus exter-
nal flow, compressible versus incompressible flow, laminar versus turbulent 
flow, natural versus forced flow, and steady versus unsteady flow. We also 
discuss the no-slip condition at solid–fluid interfaces and present a brief his-
tory of the development of fluid mechanics. 
	 After presenting the concepts of system and control volume, we review 
the unit systems that will be used. We then discuss how mathematical mod-
els for engineering problems are prepared and how to interpret the results 
obtained from the analysis of such models. This is followed by a presenta-
tion of an intuitive systematic problem-solving technique that can be used as 
a model in solving engineering problems. Finally, we discuss accuracy, pre-
cision, and significant digits in engineering measurements and calculations. 

OBJECTIVES

When you finish reading this chapter, 
you should be able to

■■ Understand the basic concepts 
of fluid mechanics 

■■ Recognize the various types of 
fluid flow problems encountered 
in practice

■■ Model engineering problems 
and solve them in a systematic 
manner

■■ Have a working knowledge 
of accuracy, precision, 
and significant digits, and 
recognize the importance of 
dimensional homogeneity in 
engineering calculations

Schlieren image showing the thermal  
plume produced by Professor Cimbala  
as he welcomes you to the fascinating  

world of fluid mechanics.
Courtesy of Michael J. Hargather and John Cimbala.
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2
Introduction and basic concepts

1–1  ■  INTRODUCTION
Mechanics is the oldest physical science that deals with both stationary and 
moving bodies under the influence of forces. The branch of mechanics that 
deals with bodies at rest is called statics, while the branch that deals with 
bodies in motion under the action of forces is called dynamics. The subcat-
egory fluid mechanics is defined as the science that deals with the behavior 
of fluids at rest (fluid statics) or in motion (fluid dynamics), and the interac-
tion of fluids with solids or other fluids at the boundaries. Fluid mechanics 
is also referred to as fluid dynamics by considering fluids at rest as a spe-
cial case of motion with zero velocity (Fig. 1–1).
	 Fluid mechanics itself is also divided into several categories. The study 
of the motion of fluids that can be approximated as incompressible (such 
as liquids, especially water, and gases at low speeds) is usually referred to 
as hydrodynamics. A subcategory of hydrodynamics is hydraulics, which 
deals with liquid flows in pipes and open channels. Gas dynamics deals 
with the flow of fluids that undergo significant density changes, such as the 
flow of gases through nozzles at high speeds. The category aerodynamics 
deals with the flow of gases (especially air) over bodies such as aircraft, 
rockets, and automobiles at high or low speeds. Some other specialized 
categories such as meteorology, oceanography, and hydrology deal with 
naturally occurring flows.

What Is a Fluid?
You will recall from physics that a substance exists in three primary phases: 
solid, liquid, and gas. (At very high temperatures, it also exists as plasma.) 
A substance in the liquid or gas phase is referred to as a fluid. Distinction 
between a solid and a fluid is made on the basis of the substance’s abil-
ity to resist an applied shear (or tangential) stress that tends to change its 
shape. A solid can resist an applied shear stress by deforming, whereas a 
fluid deforms continuously under the influence of a shear stress, no matter 
how small. In solids, stress is proportional to strain, but in fluids, stress is 
proportional to strain rate. When a constant shear force is applied, a solid 
eventually stops deforming at some fixed strain angle, whereas a fluid never 
stops deforming and approaches a constant rate of strain.
	 Consider a rectangular rubber block tightly placed between two plates. As 
the upper plate is pulled with a force F while the lower plate is held fixed, 
the rubber block deforms, as shown in Fig. 1–2. The angle of deformation α 
(called the shear strain or angular displacement) increases in proportion to 
the applied force F. Assuming there is no slip between the rubber and the 
plates, the upper surface of the rubber is displaced by an amount equal to 
the displacement of the upper plate while the lower surface remains station-
ary. In equilibrium, the net force acting on the upper plate in the horizontal 
direction must be zero, and thus a force equal and opposite to F must be 
acting on the plate. This opposing force that develops at the plate–rubber 
interface due to friction is expressed as F = τA, where τ is the shear stress 
and A is the contact area between the upper plate and the rubber. When the 
force is removed, the rubber returns to its original position. This phenome-
non would also be observed with other solids such as a steel block provided 
that the applied force does not exceed the elastic range. If this experiment 
were repeated with a fluid (with two large parallel plates placed in a large 

Contact area,
A

Shear stress
τ = F/A

Shear
strain, α

Force, F

α
Deformed 

rubber

FIGURE 1–2
Deformation of a rubber block placed 
between two parallel plates under the 
influence of a shear force. The shear 
stress shown is that on the rubber—an 
equal but opposite shear stress acts on 
the upper plate.

FIGURE 1–1
Fluid mechanics deals with liquids and 
gases in motion or at rest. 
© Goodshoot/Fotosearch RF
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body of water, for example), the fluid layer in contact with the upper plate 
would move with the plate continuously at the velocity of the plate no mat-
ter how small the force F. The fluid velocity would decrease with depth 
because of friction between fluid layers, reaching zero at the lower plate. 
	 You will recall from statics that stress is defined as force per unit area 
and is determined by dividing the force by the area upon which it acts. The 
normal component of a force acting on a surface per unit area is called the 
normal stress, and the tangential component of a force acting on a surface 
per unit area is called shear stress (Fig. 1–3). In a fluid at rest, the normal 
stress is called pressure. A fluid at rest is at a state of zero shear stress. 
When the walls are removed or a liquid container is tilted, a shear develops 
as the liquid moves to re-establish a horizontal free surface. 
	 In a liquid, groups of molecules can move relative to each other, but the vol-
ume remains relatively constant because of the strong cohesive forces between 
the molecules. As a result, a liquid takes the shape of the container it is in, 
and it forms a free surface in a larger container in a gravitational field. A gas, 
on the other hand, expands until it encounters the walls of the container and 
fills the entire available space. This is because the gas molecules are widely 
spaced, and the cohesive forces between them are very small. Unlike liquids, 
a gas in an open container cannot form a free surface (Fig. 1–4).
	 Although solids and fluids are easily distinguished in most cases, this distinc-
tion is not so clear in some borderline cases. For example, asphalt appears and 
behaves as a solid since it resists shear stress for short periods of time. When 
these forces are exerted over extended periods of time, however, the asphalt 
deforms slowly, behaving as a fluid. Some plastics, lead, and slurry mixtures 
exhibit similar behavior. Such borderline cases are beyond the scope of this 
text. The fluids we deal with in this text will be clearly recognizable as fluids.
	 Intermolecular bonds are strongest in solids and weakest in gases. One 
reason is that molecules in solids are closely packed together, whereas in 
gases they are separated by relatively large distances (Fig. 1–5). The mole-
cules in a solid are arranged in a pattern that is repeated throughout. Because 
of the small distances between molecules in a solid, the attractive forces of 
molecules on each other are large and keep the molecules at fixed positions. 
The molecular spacing in the liquid phase is not much different from that of 

Free surface

Liquid Gas

FIGURE 1–4
Unlike a liquid, a gas does not form a 
free surface, and it expands to fill the 

entire available space.

(a) (b) (c)

FIGURE 1–5
The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions 

in a solid, (b) groups of molecules move about each other in the liquid phase, and  
(c) individual molecules move about at random in the gas phase.

FIGURE 1–3
The normal stress and shear stress at 

the surface of a fluid element. For  
fluids at rest, the shear stress is zero 

and pressure is the only normal stress.
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the solid phase, except the molecules are no longer at fixed positions relative 
to each other and they can rotate and translate freely. In a liquid, the inter-
molecular forces are weaker relative to solids, but still strong compared with 
gases. The distances between molecules generally increase slightly as a solid 
turns liquid, with water being a notable exception.
	 In the gas phase, the molecules are far apart from each other, and molecu-
lar ordering is nonexistent. Gas molecules move about at random, continu-
ally colliding with each other and the walls of the container in which they 
are confined. Particularly at low densities, the intermolecular forces are very 
small, and collisions are the only mode of interaction between the mole-
cules. Molecules in the gas phase are at a considerably higher energy level 
than they are in the liquid or solid phase. Therefore, the gas must release a 
large amount of its energy before it can condense or freeze. 
	 Gas and vapor are often used as synonymous words. The vapor phase of 
a substance is customarily called a gas when it is above the critical tempera-
ture. Vapor usually implies that the current phase is not far from a state of 
condensation.
	 Any practical fluid system consists of a large number of molecules, and the 
properties of the system naturally depend on the behavior of these molecules. 
For example, the pressure of a gas in a container is the result of momentum 
transfer between the molecules and the walls of the container. However, one 
does not need to know the behavior of the gas molecules to determine the pres-
sure in the container. It is sufficient to attach a pressure gage to the container 
(Fig. 1–6). This macroscopic or classical approach does not require a knowl-
edge of the behavior of individual molecules and provides a direct and easy 
way to analyze engineering problems. The more elaborate microscopic or sta-
tistical approach, based on the average behavior of large groups of individual 
molecules, is rather involved and is used in this text only in a supporting role.

Application Areas of Fluid Mechanics
It is important to develop a good understanding of the basic principles of 
fluid mechanics, since fluid mechanics is widely used both in everyday 
activities and in the design of modern engineering systems from vacuum 
cleaners to supersonic aircraft. For example, fluid mechanics plays a vital 
role in the human body. The heart is constantly pumping blood to all parts 
of the human body through the arteries and veins, and the lungs are the sites 
of airflow in alternating directions. All artificial hearts, breathing machines, 
and dialysis systems are designed using fluid dynamics (Fig. 1–7). 
	 An ordinary house is, in some respects, an exhibition hall filled with appli-
cations of fluid mechanics. The piping systems for water, natural gas, and 
sewage for an individual house and the entire city are designed primarily on 
the basis of fluid mechanics. The same is also true for the piping and ducting 
network of heating and air-conditioning systems. A refrigerator involves tubes 
through which the refrigerant flows, a compressor that pressurizes the refrig-
erant, and two heat exchangers where the refrigerant absorbs and rejects heat. 
Fluid mechanics plays a major role in the design of all these components. 
Even the operation of ordinary faucets is based on fluid mechanics.
	 We can also see numerous applications of fluid mechanics in an automo-
bile. All components associated with the transportation of the fuel from the 
fuel tank to the cylinders—the fuel line, fuel pump, and fuel injectors or 

Pressure
gage

FIGURE 1–6
On a microscopic scale, pressure 
is determined by the interaction of 
individual gas molecules. However, 
we can measure the pressure on a 
macroscopic scale with a pressure 
gage.

FIGURE 1–7
Fluid dynamics is used extensively in 
the design of artificial hearts. Shown 
here is the Penn State Electric Total 
Artificial Heart.
Courtesy of the Biomedical Photography Lab,  
Penn State Biomedical Engineering Institute.   
Used by permission.
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carburetors—as well as the mixing of the fuel and the air in the cylinders 
and the purging of combustion gases in exhaust pipes—are analyzed using 
fluid mechanics. Fluid mechanics is also used in the design of the heating 
and air-conditioning system, the hydraulic brakes, the power steering, the 
automatic transmission, the lubrication systems, the cooling system of the 
engine block including the radiator and the water pump, and even the tires. 
The sleek streamlined shape of recent model cars is the result of efforts to 
minimize drag by using extensive analysis of flow over surfaces.
	 On a broader scale, fluid mechanics plays a major part in the design and 
analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines, 
biomedical devices, cooling systems for electronic components, and trans-
portation systems for moving water, crude oil, and natural gas. It is also 
considered in the design of buildings, bridges, and even billboards to make 
sure that the structures can withstand wind loading. Numerous natural phe-
nomena such as the rain cycle, weather patterns, the rise of ground water to 
the tops of trees, winds, ocean waves, and currents in large water bodies are 
also governed by the principles of fluid mechanics (Fig. 1–8). 

FIGURE 1–8
Some application areas of fluid mechanics.
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Industrial applications
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1–2  ■  A BRIEF HISTORY OF FLUID MECHANICS1

One of the first engineering problems humankind faced as cities were devel-
oped was the supply of water for domestic use and irrigation of crops. Our 
urban lifestyles can be retained only with abundant water, and it is clear 
from archeology that every successful civilization of prehistory invested in 
the construction and maintenance of water systems. The Roman aqueducts, 
some of which are still in use, are the best known examples. However, per-
haps the most impressive engineering from a technical viewpoint was done 
at the Hellenistic city of Pergamon in present-day Turkey. There, from 283 to 
133 BC, they built a series of pressurized lead and clay pipelines (Fig. 1–9), 
up to 45 km long that operated at pressures exceeding 1.7 MPa (180 m of 
head). Unfortunately, the names of almost all these early builders are lost to 
history.
	 The earliest recognized contribution to fluid mechanics theory was made 
by the Greek mathematician Archimedes (285–212 BC). He formulated and 
applied the buoyancy principle in history’s first nondestructive test to deter-
mine the gold content of the crown of King Hiero II. The Romans built great 
aqueducts and educated many conquered people on the benefits of clean 
water, but overall had a poor understanding of fluids theory. (Perhaps they 
shouldn’t have killed Archimedes when they sacked Syracuse.)
	 During the Middle Ages, the application of fluid machinery slowly but 
steadily expanded. Elegant piston pumps were developed for dewatering 
mines, and the watermill and windmill were perfected to grind grain, forge 
metal, and for other tasks. For the first time in recorded human history, sig-
nificant work was being done without the power of a muscle supplied by a 
person or animal, and these inventions are generally credited with enabling 
the later industrial revolution. Again the creators of most of the progress 
are unknown, but the devices themselves were well documented by several 
technical writers such as Georgius Agricola (Fig. 1–10).
	 The Renaissance brought continued development of fluid systems and 
machines, but more importantly, the scientific method was perfected and 
adopted throughout Europe. Simon Stevin (1548–1617), Galileo Galilei 
(1564–1642), Edme Mariotte (1620–1684), and Evangelista Torricelli 
(1608–1647) were among the first to apply the method to fluids as they 
investigated hydrostatic pressure distributions and vacuums. That work 
was integrated and refined by the brilliant mathematician and philosopher, 
Blaise Pascal (1623–1662). The Italian monk, Benedetto Castelli (1577–
1644) was the first person to publish a statement of the continuity principle 
for fluids. Besides formulating his equations of motion for solids, Sir Isaac 
Newton (1643–1727) applied his laws to fluids and explored fluid inertia 
and resistance, free jets, and viscosity. That effort was built upon by Daniel  
Bernoulli (1700–1782), a Swiss, and his associate Leonard Euler (1707–
1783). Together, their work defined the energy and momentum equations. 
Bernoulli’s 1738 classic treatise Hydrodynamica may be considered the first 
fluid mechanics text. Finally, Jean d’Alembert (1717–1789) developed the 
idea of velocity and acceleration components, a differential expression of 

1 This section is contributed by Professor Glenn Brown of Oklahoma State University.

FIGURE 1–9
Segment of Pergamon pipeline.  
Each clay pipe section was  
13 to 18 cm in diameter. 
Courtesy of Gunther Garbrecht.   
Used by permission.

FIGURE 1–10
A mine hoist powered  
by a reversible water wheel. 
© Universal History Archive/Getty Images
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continuity, and his “paradox” of zero resistance to steady uniform motion 
over a body.
	 The development of fluid mechanics theory through the end of the eigh-
teenth century had little impact on engineering since fluid properties and 
parameters were poorly quantified, and most theories were abstractions that 
could not be quantified for design purposes. That was to change with the 
development of the French school of engineering led by Riche de Prony 
(1755–1839). Prony (still known for his brake to measure shaft power) and 
his associates in Paris at the École Polytechnique and the École des Ponts 
et Chaussées were the first to integrate calculus and scientific theory into 
the engineering curriculum, which became the model for the rest of the 
world. (So now you know whom to blame for your painful freshman year.) 
Antonie Chezy (1718–1798), Louis Navier (1785–1836), Gaspard Coriolis 
(1792–1843), Henry Darcy (1803–1858), and many other contributors to 
fluid engineering and theory were students and/or instructors at the schools.
	 By the mid nineteenth century, fundamental advances were coming on 
several fronts. The physician Jean Poiseuille (1799–1869) had accurately 
measured flow in capillary tubes for multiple fluids, while in Germany 
Gotthilf Hagen (1797–1884) had differentiated between laminar and turbu-
lent flow in pipes. In England, Lord Osborne Reynolds (1842–1912) con-
tinued that work (Fig. 1–11) and developed the dimensionless number that 
bears his name. Similarly, in parallel to the early work of Navier, George 
Stokes (1819–1903) completed the general equation of fluid motion (with 
friction) that takes their names. William Froude (1810–1879) almost single-
handedly developed the procedures and proved the value of physical model 
testing. American expertise had become equal to the Europeans as demon-
strated by James Francis’ (1815–1892) and Lester Pelton’s (1829–1908) pio-
neering work in turbines and Clemens Herschel’s (1842–1930) invention of 
the Venturi meter.
	 In addition to Reynolds and Stokes, many notable contributions were made 
to fluid theory in the late nineteenth century by Irish and English scientists, 
including William Thomson, Lord Kelvin (1824–1907), William Strutt, Lord 
Rayleigh (1842–1919), and Sir Horace Lamb (1849–1934). These individu-
als investigated a large number of problems, including dimensional analysis, 
irrotational flow, vortex motion, cavitation, and waves. In a broader sense, 

FIGURE 1–11
Osborne Reynolds’ original apparatus 
for demonstrating the onset of turbu-

lence in pipes, being operated  
by John Lienhard at the University  

of Manchester in 1975. 
Courtesy of John Lienhard, University of Houston. 

Used by Permission.
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their work also explored the links between fluid mechanics, thermodynam-
ics, and heat transfer.
	 The dawn of the twentieth century brought two monumental developments. 
First, in 1903, the self-taught Wright brothers (Wilbur, 1867–1912; Orville, 
1871–1948) invented the airplane through application of theory and deter-
mined experimentation. Their primitive invention was complete and contained 
all the major aspects of modern aircraft (Fig. 1–12). The Navier–Stokes equa-
tions were of little use up to this time because they were too difficult to solve. 
In a pioneering paper in 1904, the German Ludwig Prandtl (1875–1953) 
showed that fluid flows can be divided into a layer near the walls, the bound-
ary layer, where the friction effects are significant, and an outer layer where 
such effects are negligible and the simplified Euler and Bernoulli equations 
are applicable. His students, Theodor von Kármán (1881–1963), Paul Blasius 
(1883–1970), Johann Nikuradse (1894–1979), and others, built on that theory 
in both hydraulic and aerodynamic applications. (During World War II, both 
sides benefited from the theory as Prandtl remained in Germany while his 
best student, the Hungarian-born von Kármán, worked in America.) 
	 The mid twentieth century could be considered a golden age of fluid 
mechanics applications. Existing theories were adequate for the tasks at 
hand, and fluid properties and parameters were well defined. These sup-
ported a huge expansion of the aeronautical, chemical, industrial, and 
water resources sectors; each of which pushed fluid mechanics in new 
directions. Fluid mechanics research and work in the late twentieth century 
were dominated by the development of the digital computer in America. 
The ability to solve large complex problems, such as global climate mod-
eling or the optimization of a turbine blade, has provided a benefit to our 
society that the eighteenth-century developers of fluid mechanics could 
never have imagined (Fig. 1–13). The principles presented in the following 
pages have been applied to flows ranging from a moment at the micro-
scopic scale to 50 years of simulation for an entire river basin. It is truly 
mind-boggling.
	 Where will fluid mechanics go in the twenty-first century and beyond? 
Frankly, even a limited extrapolation beyond the present would be sheer folly. 
However, if history tells us anything, it is that engineers will be applying 
what they know to benefit society, researching what they don’t know, and 
having a great time in the process.

1–3  ■  THE NO-SLIP CONDITION
Fluid flow is often confined by solid surfaces, and it is important to under-
stand how the presence of solid surfaces affects fluid flow. We know that 
water in a river cannot flow through large rocks, and must go around them. 
That is, the water velocity normal to the rock surface must be zero, and 
water approaching the surface normally comes to a complete stop at the sur-
face. What is not as obvious is that water approaching the rock at any angle 
also comes to a complete stop at the rock surface, and thus the tangential 
velocity of water at the surface is also zero. 
	 Consider the flow of a fluid in a stationary pipe or over a solid surface 
that is nonporous (i.e., impermeable to the fluid). All experimental observa-
tions indicate that a fluid in motion comes to a complete stop at the surface 

FIGURE 1–12
The Wright brothers take  
flight at Kitty Hawk.
Courtesy Library of Congress Prints &  
Photographs Division [LC-DIG-ppprs-00626].

FIGURE 1–13
Old and new wind turbine technologies 
north of Woodward, OK. The modern 
turbines have up to 8 MW capacities.
Photo courtesy of the Oklahoma Wind Power 
Initiative. Used by permission.
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and assumes a zero velocity relative to the surface. That is, a fluid in direct 
contact with a solid “sticks” to the surface, and there is no slip. This is 
known as the no-slip condition. The fluid property responsible for the no-
slip condition and the development of the boundary layer is viscosity and is 
discussed in Chap. 2.
	 The photograph in Fig. 1–14 clearly shows the evolution of a velocity gra-
dient as a result of the fluid sticking to the surface of a blunt nose. The layer 
that sticks to the surface slows the adjacent fluid layer because of viscous 
forces between the fluid layers, which slows the next layer, and so on. A 
consequence of the no-slip condition is that all velocity profiles must have 
zero values with respect to the surface at the points of contact between a 
fluid and a solid surface (Fig. 1–15). Therefore, the no-slip condition is 
responsible for the development of the velocity profile. The flow region 
adjacent to the wall in which the viscous effects (and thus the velocity gra-
dients) are significant is called the boundary layer. Another consequence 
of the no-slip condition is the surface drag, or skin friction drag, which is 
the force a fluid exerts on a surface in the flow direction. 
	 When a fluid is forced to flow over a curved surface, such as the back 
side of a cylinder, the boundary layer may no longer remain attached to the 
surface and separates from the surface—a process called flow separation 
(Fig. 1–16). We emphasize that the no-slip condition applies everywhere 
along the surface, even downstream of the separation point. Flow separation 
is discussed in greater detail in Chap. 9. 
	 A phenomenon similar to the no-slip condition occurs in heat transfer. 
When two bodies at different temperatures are brought into contact, heat 
transfer occurs such that both bodies assume the same temperature at the 
points of contact. Therefore, a fluid and a solid surface have the same tem-
perature at the points of contact. This is known as no-temperature-jump  
condition.

1–4  ■  CLASSIFICATION OF FLUID FLOWS
Earlier we defined fluid mechanics as the science that deals with the behav-
ior of fluids at rest or in motion, and the interaction of fluids with solids or 
other fluids at the boundaries. There is a wide variety of fluid flow prob-
lems encountered in practice, and it is usually convenient to classify them 
on the basis of some common characteristics to make it feasible to study 
them in groups. There are many ways to classify fluid flow problems, and 
here we present some general categories.

FIGURE 1–14
The development of a velocity profile 
due to the no-slip condition as a fluid 

flows over a blunt nose.
“Hunter Rouse: Laminar and Turbulence Flow 

Film.” Copyright IIHR-Hydroscience & Engineer-
ing. The University of Iowa. Used by permission.

Relative
velocities
of fluid layers

Uniform
approach
velocity, V

Zero 
velocity
at the 
surface

Plate

FIGURE 1–15
A fluid flowing over a stationary 

surface comes to a complete stop at 
the surface because of the no-slip 

condition.

Separation point

FIGURE 1–16
Flow separation during flow over a curved surface.
From Head, Malcolm R. 1982 in Flow Visualization II, W. Merzkirch. Ed., 
399–403, Washington: Hemisphere.
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